

Ph.D. Agriculture (Agronomy) PROGRAM SYLLABUS (EMBEDDED WITH COs)

School of Agriculture, ITM University, Gwalior, Madhya Pradesh 474001

SYLLABUS

WITH

EMBEDDED

COURSE OUTCOMES (COs)

Semester-I

Course Code: AGRON-601				С	Course Name: Current Trends in Agronomy				Semester:I st
Credits	L	Т	Р	M	Iark	ĸs	Contact Hours (per week)	Independent Study Hour (per week)	Section (Group)
3	3	0	0				3		Ph.D. Agronomy
Curriculum level							Basic, recent and Innovative	Student specific course outcome	Research Entrepreneurship and Methodology

Objective:

• To acquaint the students about recent advances in agricultural production.

Course outcomes: After completion of the course, a student will be able to:

CO-1	What are the advances in soil-plant-water relationship for crop production
CO-2	Demonstrate the remote sensing tools and artificial Intelligence
CO-3	Identify the environmental effect through the crop residues management
CO-4	Analyze different tools of the remote sensing and its application in crop production
CO-5	Compare to the different research methodology in Agronomy

	Classroom						
T1	Lectures/Guest lecturers						
	Student						
	Seminars/Presentations						
	ABL						
T2	activitiesAssi						
	gnment						

Assessment tools	
AT1-1	One Midterm Exam
AT1-2	Seminar, Presentation
AT1-3	Assignment
AT1-4	Activity Based Learning

Prerequisites	Unit wise contents details	Teaching Pedagogy	Assessment tools
---------------	----------------------------	-------------------	------------------

	Unit – 1 Agro-physiological basis of variation in yield, recent advances in soil-plant-water relationship.	Classroom teaching with AV aids	Assignment, Quiz , Mid-term examinations
	Unit – 11 Globalization of agriculture and WTO, precision agriculture, contract farming, organic farming, marketing and export potential of organic products, certification, labelling and accreditation procedures and ITK in organic farming.	Flipped classes teaching model, Discussions, Field demonstration (ABL)	Assignment, Unannounced test Mid and End Term Examinations
Course content	Unit – III Crop residue management in multiple cropping systems; latest developments in plant management Mechanization in crop production: modern agricultural precision tools and technologies, weed management, cropping systems, grassland management, agro-forestry, allelopathy.	Lecture method/ Presentation Field demonstration (ABL)	Skill test , Quiz. end term examinations
	Unit – IV GIS, GPS and remote sensing for crop management, global warming, GM crops, seed production technology; seed certification, seed multiplication, hybrid seed production etc.	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
	Unit-V Concepts of system agriculture; holistic approach of farming systems, dry land farming, sustainable agriculture and research methodology in Agronomy. Conservation agriculture, principles, prospects and importance, potential benefits of CA under climate change scenario, policy issues.	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation , Unannounced test, End term examination

Resources:	LCD, OHP, Black Board, Agronomy lab and tools, field for demonstration, Poly house, Net house and Different types of devices.
Assignment/T utorial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.
List of	1. Latest trends in precision agriculture
Assignments	2. Using of precision agricultural tool for maximization of crop production
ABL	 Soil mapping using AI Visit to Indian institute of remote sensing.
Suggested reading:	 Agarwal RL. 1995. Seed Technology. Oxford & IBH. Dahiya BS and Rai KN. 1997. Seed Technology. Kalyani. Govardhan V. 2000. Remote Sensing and Water Management in Command Areas: AgroecologicalProspectives. IBDC. Restructured and Revised Syllabi of Post-graduate

Programmes Vol. 2 66.
4. ICAR. 2006. Hand Book of Agriculture. ICAR.
5. Narasaiah ML. 2004. World Trade Organization and Agriculture. Sonali Publ.
6. Palaniappan SP and Annadurai K. 2006. Organic Farming - Theory and Practice. Scientific Publ.
7. Sen S and Ghosh N. 1999. Seed Science and Technology. Kalyani.
8. Tarafdar JC, Tripathi KP and Kumar M. 2007. Organic Agriculture Scientific Publ.
9. Kumar, R, Swarnkar KS, Singh KS and Narayan S. 2016. A Text Book of Seed Technology. Kalyani Publication.
10. Reddy SR and Prabhakara G. 2015. Dryland Agriculture. Kalyani Publishers.
11. Gururajan B, Balasubhramanian R and Swaminath V. 2013. Recent Strategies on Crop Production. Kalyani Publishers.
12. Venkateswarlu B and ShankerArun K. 2009. Climate change and agriculture: Adaptation and
mitigation strategies. Indian Journal of Agronomy 54(2): 226-230

CourseCo	de: AG	RON-	602	Course Product	Name:Recent Trends in ivity	Semester:1 ST	
Credits	L	Т	Р	Marks	Contact Hours(perwe ek)	Independent StudyHour(perweek)	Section(Group)
3	2	0	1		4	3	2
	Cu	rriculu	mlevel		Basic, applied andInnovative	Student specificcourseoutco me	Higher EducationPlacem entResearchEntre preneurship

Objective: To study the physiology of vegetative and reproductive growth in relation to productivity of different crops in various environments.

Course outcomes: Throughthiscoursestudentswillbeableto:

CO-1	Getknowledgeaboutthecrop growth for agricultural production							
CO-2	Prepareanoutlinebasedoncrop productivity factors, growth analysis concepts andCompetitive relationship with different cropping systems.							
CO-3	Apply recentcropmanagementpractices on crop growth and productivity with proper resource use efficiency.							
CO-4	Analysetherecenttrendsincrop growth and productivity under changing climate scenario.							

	Activitybased learningusingdifferenttools
	Flipped classes teaching
	modelCollaborativelearning
T1	Socraticmethodofteaching.
	Power PointPresentations.
	ABLactivities
	FielddemonstrationAssi
	gnmentUnannouncedte
	st
T2	Seminarswithopendiscussions
	Groupdiscussionsordebate
	Quiz

Assessmenttools						
AT1-1	MidtermExamsandendtermexam					
AT1-2	Assignment					
AT1-3	Unannouncedtest					
AT1-4	ActivityBasedLearning					

Limitations in		
interpreting		
crop growth		
and		
development;		
growth curves:		
sigmoid,		
polynomial and		
asymptotic;		
root systems;		
root-shoot		
relationship;		
principles		
involved in		
inter and		
mixed		
cropping		
systems under		
rainfed and		
irrigated		
conditions;		
concept and		
differentiation		
of inter and		
mixed		
cropping; criteria in		
assessing the		
yield		
advantages.		
Unit–III	Lecture method/Presentation	Skilltest,Quiz.end termexaminations
Competitive	Fielddemonstration(ABL)	
relationship		
and		
competition		
functions;		
biological and		
agronomic		
basis of yield		
advantage		
under		
intercropping;		
physiological		
principles of		
dry land crop		
production,		
constraints and		

remedial		
measures; heat		
unit concept of		
crop maturity:		
concept and		
types of heat		
units.		
Unit– IV	Collaborativelearning,	Group
Concept of	Lecturemethod, ABL	discussionsordebate, Assignment, Extempore,
plant		End TermExaminations
ideotypes: crop		
physiological		
and new		
ideotypes;		
characteristics		
of ideotype for		
wheat, rice,		
maize, etc.;		
concept and		
types of growth		
hormones;		
their role in		
field crop		
production;		
efficient use of		
resources.		

PracticalExercise* (Min-8)	Listofpracticals(field/labexercises) Assessmenttools
	1. Field measurement of root-shoot relationship in crops Activity based learning can b
	 at different growth stages. 2. Estimation of growth evaluating parameters like application aspect CGR, RGR, NAR, LAI etc., at different stages of crop growth.
	3. Computation of harvest index of various crops.
	4. Assessment of crop yield on the basis of yield attributing characters.
	5. Construction of crop growth curves based on growth analysis data.
	6. Computation of competition functions, viz. LER, IER aggressivity competition index etc in intercropping.
	7. Senescence and abscission indices.
	8. Analysis of productivity trend in un-irrigated areas.
	9. Analysis of productivity trend in irrigated areas.
Resources:	Classroom teaching with AVaids, group discussion, assignment, Agronomy lab

Assignment/Tutorial:	Studentsarerequiredtosubmitthegivenassignmentsasapartoftheircontinuousevaluationsystem		
ListofAssignments	1. Principles involved in inter and mixed cropping systems under rainfed and irrigated conditions.		
	2. Concept and types of growth hormones		
	1. Chopra VL and Paroda RS. 1984. Approaches for Incorporation of Drought and Salinity Resistance in Crop Plants. Oxford & IBH.		
	2. Delvin RM and Vitham FH. 1986. Plant Physiology. CBS Publ.		
	3. Evans LT. 1975. Crop Physiology. Cambridge Univ. Press.		
Suggestedreading:	4. Evans LT. 1996. Crop Evolution, Adaptation and Yield. Cambridge Univ. Press.		
	 Gupta US. (Ed.). 1995. Production and Improvement of Crops for Drylands. Oxford & IBH. 		
	6. Gupta US. 1988. Progress in Crop Physiology. Oxford & IBH.		
	7. Kramer PJ and Boyer JS. 1995. Water Relations of Plant and Soils. Academic Press.		
	8. Mukherjee S and Ghosh AK. 1996. Plant Physiology. Tata McGraw Hill.		
	9. Narwal SS, Politycka B and Goswami CL. 2007. Plant Physiology: Research		
	Methods. Scientific Pub.		
	10. Tiaz L. and Zeiger E. 2006. Plant Physiology. Sinauer Associates, Inc.		
	1. https://www.sciencedirect.com/science/article/abs/pii/S0378429097000191		
	2. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6409995/		
Suggested e-	3. <u>https://www.mdpi.com/2073-4395/8/6/83</u>		
resources(Websites/e-	4. https://www.frontiersin.org/articles/10.3389/fpls.2017.01147/full		
books)	5. <u>https://extension.oregonstate.edu/gardening/techniques/environmental-factors-affecting-plant-growth</u>		
	6. <u>https://www.scirp.org/pdf/as_2020033115503350.pdf</u>		

L	Course Code: AGRON- 605				C	ours	se N	Semester:I st		
	Credits	L	Т	Р	Μ	[ark	KS	Contact Hours (per week)	Independent Study Hour (per week)	Section (Group)
	2	2	0	0				3		Ph.D. Agronomy

	Basic, recent and	Student specific	Research
Curriculum level	Innovative	course outcome	Entrepreneurship and
			Methodology

To apprise about different enterprises suitable for different agroclimatic conditions for sustainable agriculture. **Course outcomes:** After completion of the course, a student will be able to:

CO-1	Identify and understand different types of enterprises includes in IFS.
CO-2	Interpretate the components and adaptability of different farming system based on land situations and climatic condition of a region
CO-3	Discover New concepts and approaches of farming system and organic farming.
CO-4	Analyse Possible use of ITK in Integrated farming system
CO-5	Develop different Integrated Farming system Models and its evaluation.

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABL activities Assignments

Assessmen	Assessment tools				
AT-1	One Midterm Exam				
AT-2	Seminar, Presentation				
AT-3	Assignment				
AT-4	Activity Based Learning				

Prerequisites	Unit wise contents details	Teaching	Assessment tools
		Pedagogy	

Unit – I		. • <i>.</i>
Integrated Farming systems (IFS): definition, scope and importance; classification of IFS based on enterprises as well as under rainfed/irrigated condition in different land situation. farming systems according to type of rotation, intensity of rotation, degree of commercialization, water supply, enterprises.	Classroom teaching with AV aids	Assignment, Quiz, Mid-term examinations
Unit – 11 Concept of sustainability in of Integrated farming systems; efficient Integrated farming systems based on economic viability and natural resources - identification and management.	Flipped classes teaching model, Discussions, Field demonstration (ABL)	Assignment, Unannounced test Mid and End Term Examinations
Unit – III Production potential of different components of Integrated farming systems; interaction and mechanism of different production factors; stability of Integrated Farming system based on research/long term information. in different systems through research; eco-physiological approaches to intercropping. Integration of components and adaptability of different farming system based on land situations and climatic condition of a region; evaluation of IFS.	Lecture method/ Presentation Field demonstration (ABL)	Skill test , Quiz. end term examinations
Unit – IV Simulation models for intercropping; soil nutrient in intercropping; preparation of different farming system models; evaluation of different farming systems. Formation of different Integrated Farming system Models; evaluation of different Integrated Farming system models. Recycling of organic waste in farming system, in IFS.	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
Unit-V New concepts and approaches of farming system and organic farming; value addition, waste recycling, quantification and mitigation of Green House gases; case studies/ success stories of different Integrated	Flipped classes teaching model, Discussions and	Seminar Presentation, Unannounced test, End term examination

Course Contents

Farming systems. cropping systems and organic	Presentation,
farming; case studies on different farming systems.	ABL
Possible use of ITK in Integrated farming system.	

Resources:	LCD, Black/ White Board, Computer
Assignment/Tutorial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.
List of Assignments	 Sustainable integrated farming system: A solution for national food security and sovereignty Analysis to develop a program for energy-integrated farm systems Role of ITK in Conservation Agriculture: Blending Indigenous and Scientific Knowledge The Indigenous Technical Knowledge (ITK) & its application for sustainability in agriculture
ABL	 Planning of IFS for the university Visit to different states for studying the specific kind of IFS models

	1	Anonthelmichnen TN (Ed.) 1002 Emergine Trends in Distant Control of
	1.	Ananthakrishnan TN. (Ed.). 1992. Emerging Trends in Biological Control of
		Phytophagous Insects. Oxford & IBH.
	2.	Baishya A, Borah M, Das AK, Hazarika J, Gogoi B and Borah AS 2017.
		Waste Recycling Through Integrated Farming systems. An Assam
		Agriculture Experience. Omni Scriptum Gmbh& Co. KG, Germany.
	3.	Balasubramanian P and Palaniappan SP. 2006. Principles and Practices of
	5.	Agronomy. Agrobios.
	4	
	4.	Edens T. 1984. Sustainable agriculture and integrated farming system.
		Michigan State Univ. press. Jayanthi C. 2006. Integrated Farming systems-A
		way to sustainable Agriculture. Tamil Nadu Agricultural University,
Suggested Reading:		Coimbatore.
	5.	Joshi M and Parbhakarasetty TK. 2005. Sustainability through Organic
		Farming. Kalyani.
	6.	Kolhapure A and Madhukar D. A text book of farming system and
		sustainable agriculture.
	7.	Palaniappan SP and Anandurai K. 1999. Organic Farming - Theory and
		Practice. Scientific Publ.
	8.	Panda SC. 2004. Cropping systems and Farming Systems. Agribios.
	9.	Lampin N. 1990. Organic Farming. Farming Press Books.
).	
		Ravisankar D and Jayanthi C. 2015. Farming systems: concepts and
		approaches. Agrobios,

Course Code: AGRON-606	Course Name: Soil Conservation and Watershed Management	Semester:I st
------------------------	---	--------------------------

Credits	L	Т	Р	Ma	rks		Independent Study Hour (per week)	Section (Group)
3	2	0	1			4		Ph.D. Agronomy
Curriculum level				Basic, recent and Innovative	Student specific course outcome	Research Entrepreneurship and Methodology		

To acquaint the students aboutabout different soil moisture conservation technologies for enhancing the agricultural productivity through holistic approach watershed management.

Course outcomes: After completion of the course, a student will be able to:

CO-1	Understand the basic knowledge on soil erosion and watershed and
CO-2	Identify the different ways of soil conservation: including agronomic and engineering measures.
CO-3	Interpretate agronomic and mechanical measures for soil conservation according to the various regions.
CO-4	Examine the reasons behind the soil erosion and steps in implementation of watershed accordingly.
CO-5	Evaluate the factors, nature and extent of soil erosion in an area.
CO-6	Development of different types of cropping system for watershed areas.

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABL activities Assignments

Assessment		
AT-1	One Midterm Exam	
AT-2	Seminar, Presentation	
AT-3	Assignment	
AT-4	Activity Based Learning	

Prerequisites Unit wise contents details	Teaching Pedagogy	Assessment tools
--	----------------------	---------------------

	Unit – 1 Soil erosion: definition, nature and extent of erosion; types of erosion, factors affecting erosion.	Classroom teaching with AV aids	Assignment, Quiz, Mid-term examinations
	Unit – 1I Soil conservation: definition, methods of soil conservation; agronomic measures - contour cultivation, strip cropping, cover crops; mulching, tillage, cropping system vegetative barriers; improved dry farming practices; mechanical measures - bunding, gully control, bench terracing; role of grasses and pastures in soil conservation; wind breaks and shelter belts.	Flipped classes teaching model, Discussions, Field demonstration (ABL)	Assignment, Unannounced test Mid and End Term Examinations
Course Contents	Unit – III Watershed management: definition, objectives, concepts, approach, components, steps in implementation of watershed; development of cropping systems for watershed areas.	Lecture method/ Presentation Field demonstration (ABL)	Skill test, Quiz. end term examinations
	Unit – IV Land use capability classification, alternate land use systems; agro-forestry; ley farming; jhum management - basic concepts, socio-ethnic aspects, its layout.	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
	Unit-V Drainage, methods of drainage, Drainage considerations and agronomic management; rehabilitation of abandoned jhum lands and measures to prevent soil erosion.	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation, Unannounced test, End term examination

ſ	Resources:	LCD, Black/ White Board, Computer	
	Practical Exercise	Course Modules	Assessment tools

	1. Study of different types of erosion	Activity based
	2. Determination of dispersion ratio	learning can be
	3. Estimation of soil loss by Universal Soil Loss Equation	given to implement
	4. Estimation of soil loss by wind erosion	application aspect
	5. Measurement of runoff and soil loss	
	6. Field studies of different soil conservation measures	
	7. Laying out run-off plot and deciding treatments	
	8. Identification of different grasses and trees for soil	
	conservation	
	9. Visit to watershed areas	
	10. Visit to a soil conservation research centre, demonstration	
	and training centre	
	Students are required to submit the given assignments and	
Assignment/Tutorial:	deliver one power point presentation as a part of their	
5	continuous evaluation system.	
	1. Global perspective of watershed management	
	2. Watershed management in Gwalior	
List of Assignments	3. Adaptive Management Fitness of Watersheds	
-	4. Watershed Management Optimization Support Tool	
	(WMOST)	
	1. Visit to dam	
ABL	2. Visit to the ICAR-Indian Institute of Soil and Water	
	Conservation (ICAR-IISWC)	

	1.	Arakeri HR and Roy D. 1984. Principles of Soil Conservation and Water		
		Management. Oxford & IBH.		
	2.	Dhruvanarayana VV. 1993. Soil and Water Conservation Research in India.		
		ICAR.		
	3.	FAO. 2004. Soil and Water Conservation in Semi-Arid Areas. Soils Bull., Paper		
		57.		
Suggested Reading:	Frederick RT, Hobbs J, Arthur D and Roy L. 1999. Soil and Water Conservation:			
	Productivity and Environment Protection. 3rd Ed. Prentice Hall. Gurmel			
		Venkataraman CG, Sastry B and Joshi P. 1990. Manual of Soil and Water		
		Conservation Practices. Oxford & IBH.		
	5.	Murthy VVN. 1995. Land and Water Management Engineering. Kalyani.		
	6.	Tripathi RP and Singh HP. 1993. Soil Erosion and Conservation. Wiley Eastern.		
	7.	Yellamanda Reddy T and Sankara Reddy GH. 1992. Principles of Agronomy.		
		Kalyani.		

Suggested websites:

Course Code: SOIL- 602					Course Name: Modern Concept of Soil Fertility Semester: I st				
Credits	L	Т	Р	Ma	rks	Contact Hours (per week)	Independent Study Hour (per week)	Section (Group)	
02	2	0	0			02		Ph.D. Agronomy	
Curricu	lum lev	vel	1	<u> </u>	1	Basic, recent and Innovative	Student specific course outcome	Research Entrepreneurship and Methodology	

To provide knowledge of modern concepts of soil fertility and nutrient use in crop production.

Course outcomes: After completion of the course, a student will be able to:

CO-1	To assemble the knowledge about the Nutrient availability their relationships between the soil & plant system.
CO-2	Demonstrate the mechanism of nutrient transport from soil to plant system.
CO-3	Identify the Chemical equilibria involving nutrientions in soils
CO-4	Evaluate the, nutrient use efficiency and nutrient budgeting.
CO-5	Compare physical, chemical and biological changes in soils

	Class room						
T1	Lectures/Guestlecturers						
	Student Seminars/Presentations						
	ABL						
T2	activitiesAssignme						
	nts						

Assessment to	Assessment tools							
AT1-1	One Midterm Exam							
AT1-2	Seminar, Presentation							
AT1-3	Assignment							
AT1-4	Activity Based Learning							

Prerequisites	Unit wise contents details	Teaching Pedagogy	Assessment tools	
---------------	----------------------------	----------------------	---------------------	--

	Unit – 1 Nutrient availability-concept and relationships, modern concepts of nutrient s availability; soil colloids and nutrient	Classroom teaching with AV aids	Assignment, Quiz , Mid-term
	availability; soil amendments and availability maintenance of nutrients, soil solution and plant growth; nutrient response functions and availability indices.	alus	examinations
	Unit – 1I Nutrient movement in soils; nutrient absorption by plants; mechanistic approach to nutrient supply and uptake by plants; models for transformation and movement of major	Flipped classes teaching model, Discussions, Field demonstration	Assignment, Unannounced test Mid and End
	micronutrients in soils.	(ABL)	Term Examinations
	Unit – III Chemical equilibria (including solid-solution equilbria) involving nutrientions in soils, particularly in submerged soils; Kinetic studies of nutrients in soils.	Lecture method/ Presentation Field demonstration (ABL)	Skill test , Quiz. end term examinations
Course Contents	Unit – IV Modern concepts of fertilizer evaluation, nutrient use efficiency and nutrient budgeting.	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
	Unit-V Modern concepts in fertilizer application; soil fertility evaluation techniques; role of soil tests in fertilizer use recommendations; site-specific nutrient management for precision agriculture	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation , Unannounced test, End term examination
	Unit-VI Monitoring physical, chemical and biological changes in soils; permanent manurial trials and long-term fertilizer experiments; soil productivity under long-term intensive cropping; direct, residual and cumulative effect of fertilizer use.	Flipped classes teaching model, Discussions and Presentation, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
	Unit-VII Carbon– a nutrient central to soil fertility; carbon cycle in nature, stocks, pools and fluxes; greenhouse effect and climate change; carbon sequestration vis-à-vis sustenance of soil quality and crop productivity.		Seminar Presentation , Unannounced test, End term examination
Resource	es: LCD, Black/ White Bo	ard Computer	

Assignment/Tutorial	Studentsarerequiredtosubmitthegivenassignmentsanddeliveronepowerpointpresentation
	asapartotineir continuouse valuationsystem.
	1. Assignments on Mechanistic approach to nutrient supply and uptake by plants
List of Assignments	2. Assignments on Carbon sequestration vis-à-vis sustenance of soil quality and crop
	productivity
ABL	1. Soil Fertility evolution
	2. UseofRapid test Method
	3. Prepare Soil Quality Index
	Brady NC and Weil RR. 2002. <i>The Nature and Properties of Soils</i> . 13th Ed. Pearson Educ.
	• Cooke GW. 1979. <i>The Control of Soil Fertility</i> . Cross by Lockwood & Sons.
	• Kabata- Pendias Alina 2001. Trace Elements in Soils and Plants. CRC / Taylor & Francis.
	 Kannaiyan S, Kumar K and Govindarajan K. 2004. <i>Biofertilizers Technology</i>. Scientific
	Publ.
	• Mortvedt JJ, Shuman LM, Cox FR and Welch RM. (Eds.). 1991. Micronutrients in
	Agriculture. 2nd Ed. Soil Science Society of America, Madison.
Suggested Reading:	Prasad R and Power JF. 1997. Soil Fertility Management for Sustainable Agriculture. CRC
Suggesten Renning.	Press.
	• Stevenson FJ and Cole MA. 1999. <i>Cycles of Soil: Carbon, Nitrogen, Phosphorus, Sulphur,</i>
	Micronutrients. John Wiley & Sons.
	• Stevenson FJ. (Ed.). 1982. <i>Nitrogen in Agricultural Soils</i> . Soil Science Society of America,
	Madison.
	 Tisdale SL, Nelson WL, Beaton JD and Havlin JL. 1990. Soil Fertility and Fertilizers. 5th
	Ed. Macmillan Publ.
	• Wild A. (Ed.). 1988. <i>Russell's Soil Conditions and Plant Growth</i> . 11th Ed. Longman.

Course Code: SOIL- 605	Course Name: Biochemistry of Soil Organic Matter	Semester:I st

Credits	L	Т	Р	Marks		ĸs	Contact Hours (per week)	Independent Study Hour (per week)	Section (Group)
02	02	0	0				02		Ph.D. Agronomy
Curriculum level			Basic, recent and Innovative	Student specific course outcome	Research Entrepreneurship and Methodology				

To impart knowledge related to chemistry and reactions of organic substances and their significance in soils.

Course outcomes: After completion of the course, a student will be able to:

CO-1	To assemble the knowledge about the Soil organic matter and Characteristic.
CO-2	Demonstrate the different pathways for humus synthesis in soil
CO-3	Identify the Chemical equilibria involving nutrientions in soils
CO-4	Evaluate the, Nutrient transformation from soil to plant system.
CO-5	Compare the Humus-pesticide interactions in soil.

T1	Class room Lectures/Guest lecturersStudent
	Seminars/Presentations
	ABL
T2	activitiesAssignments

Assessment tools	
AT1-1	One Midterm Exam
AT1-2	Seminar, Presentation
AT1-3	Assignment
AT1-4	Activity Based Learning

Prerequisites Unit wise contents details	Teaching Pedagogy	Assessment tools
--	-------------------	------------------

	Unit – I	Classroom teaching with	Assignment,
Course Contents	Organic matter in soils and its maintenance Role of organic matter in soil productivity; humus levels in soils; current thinking on the maintenance of organic matter in the soils. Carbon retention and sequestration	AV aids	Quiz , Mid-term examinations
	Unit – 11 Biochemistry of the humus formation; different pathways for humus synthesis in soil; soil carbohydrates and lipids		Assignment, Unannounced test Mid and End Tern Examinations
	Unit – III Nutrient transformation–N, P, S; tracemetal interaction with humic substances, significance of chelation reactions in soils.		Skill test , Quiz. end term examinations
	Unit – IV Reactive functional groups of humic substances, adsorption of organic compounds by clay and role of organic substances in pedogenic soil aggregation processes; clay organic matter complexes.	Collaborative learning, Lecture method, ABL	Group discussions o debate, Assignment Extempore, End Term Examinations
	Unit-V Humus-pesticide interactions in soil, mechanisms	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation Unannounced test, End term examination

Resources:	LCD, Black/ White Board, Computer					
Assignment/	tudentsarerequiredtosubmitthegivenassignmentsanddeliveronepowerpointpresentation sapartoftheircontinuousevaluationsystem.					
Tutorial:						
	1. Assignments on Biochemistry of the humus formation; different pathways for humus					
List of	2. Assignments on Humus-pesticide interactions in soil					
Assignments						
ABL	1. Evaluate the, Nutrient transformation					
	2. Extraction of Humic Substances from organic matter					
	3. Field demonstration					
Suggested	 Lynch JM, Willey JM. Soil Biotechnology. 					
Reading	 Paul EA and Clark FE. Soil Microbiology and Biochemistry 					
iccauling	 Sherwood LM and Woolverton CJ. Prescott's Microbiology. 					
	 Subba Rao NS. Advances In Agricultural Microbiology 					

Semester-II

Course Code: AGRON-603 C				Jurse	Name: Irrigation Manageme	Semester:II nd	
L	Т	Р	M	arks	Contact Hours (Per week)	Independent Study Hour (per week)	Section (Group)
2	0	1			4		Ph.D. Agronomy
Curriculum level					Basic, applied and Innovative	Student specific course outcome	Higher Education Placement Research Entrepreneurship
	2	2 0	2 0 1	2 0 1	2 0 1	2 0 1 Generation 2 0 1 4 Basic, applied and	2 0 1 (Per week) Hour (per week) Basic, applied and Student specific

Objective: To teach students about optimization of irrigation in different crops under variable agro climatic conditions.

Course outcomes: Through this course students will be able to:

000000	attomest. Through this course statents will be use to:
CO1	Discuss the fundamental knowledge of global and Indian water resources, irrigation projects of pre and post- independence and their significance on Indian agriculture, Soil water and plant relationship, mapping arid and semi-arid regions, evaporation, transpiration and evapotranspiration, mulching, irrigation requirement.
CO2	Understanding the soil-water movement under saturated and unsaturated conditions, Poiseulle's and Darcy's law, Crop water stress, integrated water management in command areas, soil and water potential.
CO3	Apply the knowledge of strategies of using limited water supply, designing and operation of irrigation projects,
CO4	Analysis of Economics of irrigation and crop planning for optimum use of water, equation of saturated and unsaturated flow of water in soil.
CO5	Assess practical knowledge of consumptive use and water requirement, Strategies of using limited water supply, Land suitability for irrigation,
CO6	Designing, planning and installation of drip irrigation system and Sprinkler irrigation system and designing of drainage channels.

	Activity based learning using different tools
	Flipped classes teaching model
T1	Collaborative learning
	Socratic method of teaching.
	Power Point Presentations.
	ABL activities
	Field demonstration of cultivation practices,
	Assignment
T2	Unannounced test
	Seminars with open discussions
	Group discussions or debate
	Quiz

	Assessment tools					
AT1-1	Mid- term Exams and end term exam					
AT1-2	Assignment					

AT1-3	Unannounced test
AT1-4	Activity Based Learning
AT1-5	Group discussions or debate
AT1-6	Skill test
AT1-7	Quiz
AT1-8	Extempore (student needs to explain the instant given topic as a teacher to all other students)
AT1-9	Seminar Presentation

Prerequisites	Unit wise contents details	Teaching Pedagogy	Assessment tools
	Unit I Global water resources; Water resources of India, irrigation projects during pre and post-independence period and their significance in crop production; irrigation needs, atmospheric, soil, agronomic, plant and water factors affecting irrigation need; water deficits and crop growth.	Socratic method, Presentation	Assignment, Quiz , Mid-term examinations
tents	Unit II Movement of water in soil-water movement under saturated and unsaturated conditions, Poiseulle's and Darcy's law, general equation of saturated and unsaturated flow of water in soil. Soil-plant-water relationships, evaporation, transpiration and evapotranspiration, significance of transpiration, energy utilization in transpiration, physiological processes and crop productivity.	Flipped classes teaching model, Discussions, Field demonstration (ABL)	Assignment, Unannounced test Mid and End Term Examinations
Course Contents	Unit – III Water requirement, irrigation needs, factors affecting irrigation need; water use efficiency, Infiltration; water movement under saturated and unsaturated conditions; management practices for improving water use efficiency of crops.	Lecture method/ Presentation Field demonstration (ABL)	Skill test , Quiz. end term examinations
	Unit IV Soil and plant water potential, SPAC, transpiration and evapotranspiration, significance of transpiration, energy utilization in transpiration, factors affecting ET, control of ET by mulching and use of anti-transpirents; fertilizer use in relation to irrigation	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
	Unit V Crop water stress – water deficits and crop growth, adoptability to the crops. Water availability with relation to nutrient availability.	Flipped classes teaching model, Discussions and Presentation,	Seminar Presentation , Unannounced test, End term
		ABL	examination

Unit VI	Collaborative	Group discussions or
Application of irrigation water, conveyance and distribution system, irrigation efficiency; agronomic considerations in the design and operation of irrigation projects; characteristics of irrigation and farming systems affecting irrigation management.	learning, Lecture method, ABL	debate, Assignment, Extempore, End Term Examinations
Unit VII Strategies of using limited water supply; factors affecting ET, control of ET by mulching and use of anti- transpirants; fertilizer use in relation to irrigation; optimizing the use of given irrigation supplies.	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation , Unannounced test, End term examination
Unit VIII Land suitability for irrigation, land irrigability classification; integrated water management in command areas, institution of water management in commands, farmer's participation in command areas; irrigation legislation.	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
Unit IX Economic analysis of irrigation and cop planning for optimum use of irrigation water	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation , Unannounced test, End term examination
Unit X Crop water production function.	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations

Practical Exercise* (Min-8)	List of practicals (field/lab exercises)	Assessment tools
	 Determination of water infiltration characteristics and water holding capacity of soil profiles. Determination Moisture extraction pattern of crops. Determination of water balance component of transplanted rice by drum culture technique. Determination of consumptive use and water requirement of a given cropping pattern. Determination of crop efficient of one important crop Planning, designing and installation of drip irrigation system Planning, designing and installation of sprinkler irrigation system. Designing of drainage channel. Measurement of irrigation efficiencies. Determination of irrigation timing under different methods of irrigation. 	Practical Activity Practical Record Attendance Viva voce

Resources:	LCD, OHP, Black Board, Classroom teaching with AV aids, group discussion, oral presentation by students.
Assignment/Tutor ial:	Students are required to submit the given assignments and deliver one power point presentation as a part of their continuous evaluation system.
List of Assignments	
Suggested reading:	 FAO. 1984. Irrigation Practice and Water Management. Oxford & IBH. MP. Singh 2017. Recent advances in Irrigation water management. Kalyani Publishers Michael AM. 1978. Irrigation: Theory and Practice. Vikas Publ. Mishra RR & Ahmad M. 1987. Manual on Irrigation and Agronomy. Oxford & IBH. Panda SC. 2003. Principles and Practices of Water Management. Agrobios. Reddy SR. 2000. Principles of Crop Production. Kalyani. Sankara Reddy GH & Yellamananda Reddy 1995. Efficient Use of Irrigation Water. In: Gupta US. (Ed.). Production and Improvement of Crops for Drylands. Oxford & IBH. Singh SS. 2006. Principles and Practices of Agronomy. In: Gupta US. (Ed.). Production and Improvement of Crops for Drylands. Oxford & IBH.
Suggested e- resources (Websites/e- books)	 <u>https://link.springer.com/book/10.1007/978-1-4419-6335-2</u> <u>https://www.intechopen.com/books/water-quality-soil-and-managing-irrigation-of-crops</u> <u>https://www.routledge.com/Research-Advances-in-Sustainable-Micro-Irrigation/book-series/AAPRESADVSUS</u> <u>https://www.asabe.org/ISM</u> <u>https://www.booktopia.com.au/books-online/non-fiction/engineering-technology/agriculture-farming/agricultural-engineering-machinery/irrigation-water-management/cTVDR-p1.html</u> <u>https://www.appleacademicpress.com/sustainable-micro-irrigation-design-systems-for-agricultural-crops-methods-and-practices/9781771882743</u> <u>https://agrimoon.com/water-management-including-micro-irrigation-icar-ecourse-pdf-book/</u> <u>https://bmpbooks.com/publications/irrigation-management/</u>

Course Code: AGRON-604				Course N	Semester:II nd		
Credits	L	Т	Р	Marks	Contact Hours (per week)	Independent Study Hour (per week)	Section (Group)

	2	2	0	0		3		Ph.D. Agronomy
a i i i i						Basic, recent and Innovative	Student specific course outcome	Research Entrepreneurship and Methodology

To acquaint the students about recent changes in weed flora, new herbicides, their resistance, toxicity, antidotes and residue management under different cropping systems.

Course outcomes: After completion of the course, a student will be able to:

CO-1	Understand the knowledge on weed biology and survey of weeds in varied ecosystem.
CO-2	Identify the nature, type and economic uses of weeds in varied habitat.
CO-3	Solve the issues related to weed control and residue management of herbicides.
CO-4	Evaluate and judge the combining effects of herbicides on soil health and environment.
CO-5	Formulate integrated weed management practices for different ecosystems

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABL activities Assignments

Assessment	t tools
AT-1	One Midterm Exam
AT-2	Seminar, Presentation
AT-3	Assignment
AT-4	Activity Based Learning

Prerequisites	Unit wise contents details	Teaching	Assessment
1 rer equisites	e intervise contents actuils	Pedagogy	tools

	Unit – 1 Crop-weed competition in different cropping situations; changes in weed flora, various causes and effects;	Classroom teaching with AV aids	Assignment, Quiz, Mid-term examinations
	different methods of weed management. Migration, introduction, adaptation of weeds, Invasive weeds – biology and management. Different mechanisms of invasion – present status and factors influencing weed invasion		
	Unit – 1I Physiological and biological aspects of herbicides, their absorption, translocation, metabolism and mode of action; selectivity of herbicides and factors affecting them.	Flipped classes teaching model, Discussions, Field demonstration (ABL)	Assignment, Unannounced test Mid and End Term Examinations
tents	Unit – III Climatic factors and phytotoxicity of herbicides; fate of herbicides in soil and factors affecting them, Degradation of herbicides in soil and plants- factors affecting it, primary and secondary metabolites, residue management of herbicides, adjuvants.	Lecture method/ Presentation Field demonstration (ABL)	Skill test, Quiz. end term examinations
Course Contents	Unit – IV Advances in herbicide products and application techniques and methods; herbicide resistance; antidotes and crop protection compatibility of herbicides of different groups; compatibility of herbicides with other pesticides; herbicide rotation and herbicide mixtures.	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
	Unit-V Development of transgenic herbicide resistant crops; herbicide development, registration procedures.	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation, Unannounced test, End term examination
	Unit-VI Relationship of herbicides with tillage, fertilizer, and irrigation, cropping system; bioherbicides, allelochemical and alleloherbicides, herbicide bioassays. Recent advances in nonchemical weed management including deleterious rhizobacteria, robotics, biodegradable film, etc.	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation, Unannounced test, End term examination

Resources:	LCD, Black/ White Board, Computer									
Assignment/Tutorial:	Students are required to submit the given assignments and deliver one power point									
Assignment/ I utoriai.	presentation as a part of their continuous evaluation system.									
	1. Emerging Challenges and Opportunities for Education									
	and Research in Weed Science2. The future for weed control and technology.									
List of Assignments	3. Estimation of dose-response models for discrete and continuous data									
	in weed science									
	4. Weeds in a Changing Climate: Vulnerabilities, Consequences, and Implications for									
	Future Weed Management									
ABL	1. Weed population processes									
	 Weed identification and manual formation Böger, Peter, Wakabayashi, Ko, Hirai, Kenji (Eds.). 2002. Herbicide Classes in 									
	Development. Mode of Action, Targets, Genetic Engineering, Chemistry. Springer.									
	Das TK. 2008. Weed Science: Basics and Applications, Jain Brothers (New Delh									
	 Das TK. 2008. Weed Science: Basics and Applications, Jain Brothers (New Delhi). Fennimore, Steven A and Bell, Carl. 2014. Principles of Weed Control, 4th Ed, 									
	California Weed Sci. Soc. Gupta OP. 2007. Weed Management: Principles an									
	Practices, 2nd Ed.									
	4. Jugulan M, (ed). 2017. Biology, Physiology and Molecular Biology of Weeds. CRC									
Suggested reading:	Press.									
88 8	5. Monaco TJ, Weller SC and Ashton FM. 2014. Weed Science Principles and									
	Practices, Wiley.									
	6. Powles SB and Shaner DL. 2001. Herbicide Resistance and World Grains, CRC									
	Press.									
	7. Walia US. 2006. Weed Management, Kalyani.									
	8. Zimdahl RL. (ed). 2018. Integrated Weed Management for Sustainable Agriculture,									
	B. D. Sci. Pub									

Course Code: S	Course Code: SOILS-609					Name: Recent Trends in Soi	l Microbial Biodiversit	y Semester:II nd
Credits	L	Т	Р	M	larks	Contact Hours (per week)	Independent Study Hour (per week)	Section (Group)
3	2	2	1			4		Ph.D. Soil Science
Curric	ulum le	evel	1	1	1 1	Basic, recent and Innovative	Student specific course outcome	Research Entrepreneurship and Methodology

To impart knowledge about the Research trends in soils microbial to acquaint with the microbial study of soil. **Course outcomes:** After completion of the course, a student will be able to:

CO-1	Investigate the research trend in soil microbial biodiversity
CO-2	Understand the Qualitative ecology of microorganisms; Biomass and activities.
CO-3	Identify the Nitrogen fixing organisms and their characteristics
CO-4	Analyze Serological and molecular characterization of soil microorganism
CO-5	Evaluate bioremediation of xerobiotic pollutants and bacterial fertilizers.

	Class room Lectures/Guest					
T1	lecturersStudent					
Seminars/Presentations						
	ABL					
T2	activitiesAssignments					

Assessment tools		
AT1-1	One Midterm Exam	
AT1-2	Seminar, Presentation	
AT1-3	Assignment	
AT1-4	Activity Based Learning	

Prerequisites	Unit wise contents details	Teaching Pedagogy	Assessment tools
	Unit – 1 Microbial evaluation and biodiversity, Microbial communities in ecosystems, New insights in below ground diverse of plant performance.	Classroom teaching with AV aids	Assignment, Quiz, Mid-term examinations
	Unit – 1I Qualitative ecology of microorganisms; Biomass and activities.	Flipped classes teaching model, Discussions, Field demonstration (ABL)	Assignment, Unannounced test Mid and End Term Examinations
Course Contents	Unit – III Nitrogen fixing organisms, Trends in diversity of N fixing organisms. Molecular approaches in characterising N fixing microorganisms.	Lecture method/ Presentation Field demonstration (ABL)	Skill test , Quiz. end term examinations
Course	Unit – IV Serology and molecular characterization, ecological aspects of bio determination, soil waste and water management	Collaborative learning, Lecture method, ABL	Group discussions or debate, Assignment, Extempore, End Term Examinations
	Unit-V Biodegradability, testing and monitoring of the bioremediation of xerobiotic pollutants and bacterial fertilizers.	Flipped classes teaching model, Discussions and Presentation, ABL	Seminar Presentation , Unannounced test, End term examination

Practical Exercise*	List of practicals (field/lab exercises)	Assessment tools
(Min-8)		
-	 Determination of soil microbes using classical techniques. Determination of soil microbial diversity using molecular techniques Estimation of soil microbial biomass carbon, nitrogen and phosphorus. Estimation of key soil enzyme activities. Community level physiological profiling of microbial diversity. 	Practical Activity Practical Record Attendance Viva voce
Resources:	LCD, Black/ White Board, Computer	
Assignment/Tutor ial:	Studentsarerequiredtosubmitthegivenassignmentsanddeliveronepowerpointprasapartoftheircontinuousevaluationsystem.	resentation

List of Assignments	 Qualitative ecology of microorganisms; Biomass and activities. Nitrogen fixing organisms, Trends in diversity of N fixing organisms
ABL	 Microbial identification techniques Serology and molecular characterization Field Demonstrations
Suggested reading:	 Lynch JM, Willey JM. Soil Biotechnology. Paul EA and Clark FE. Soil Microbiology and Biochemistry. Sherwood LM and Woolverton CJ. Prescott's Microbiology. Subba Rao NS. Advances In Agricultural Microbiology.

 Course Code: STAT 502
 Course Name: Statistical Methods for Applied Sciences
 Semester:1Ind

Credits	L	Т	Р	Marks			Contact Hours (per week)	Independent Study Hour (per week)	Section (Group)
4	3	0	1				5		Ph.D. Agronomy
	Curriculum level						Informationbased Critical thinkingbased Research based	Student specific course outcome	Placement Research Higher education

Objective: To understand different statistical concepts and its utility in agriculture research and gets hands on end-to-end solutions of statistical techniques using calculator/MS Excel/R

Course outcomes: Through this course students will be able to:

CO-1	To acquaint with the understanding of basic concept of Statistics and Probability in the field of agriculture
CO-2	Understand the concepts of probability distributions and various statistical tools used for agricultural data analysis
CO-3	Calculate the various statistical parameters of given data samples using parametric and non-parametric tests
CO-4	Able to perform multivariate analysis using different software
CO-5	Evaluate the use/role of various statistical software used for agricultural data sets test/analysis

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABL activities Assignments

Assessmen	t tools
AT-1	One Midterm Exam
AT-2	Seminar, Presentation
AT-3	Assignment
AT-4	Activity Based Learning

Prerequisites	Module wise details	Assessment tools
	Unit – 1 Box-plot, Descriptive statistics, Exploratory data analysis, Theory of probability, Random variable and mathematical expectation.	Classroom teaching ABL
Course Contents	Unit – 2 Discrete and continuous probability distributions, Binomial, Poisson, Negative Binomial, Normal distribution, Beta and Gamma distributions and their applications. Concept of sampling distribution: chi-square, t and F distributions. Tests of significance based on Normal, chi-square, t and F distributions.	Assignment Unannounced test Mid Term examination
	Unit – 3 Introduction to theory of estimation and confidence-intervals, Simple and multiple correlation coefficient, partial correlation, rank correlation, Simple and multiple	Assignment

linear regression model, test of significance of correlation coefficient and regression coefficients, Coefficient of determination, Fitting of quadratic models.	
Unit – 4 Non-parametric tests – sign, Wilcoxon, Mann-Whitney U-test, Run test for the randomness of a sequence. Median test	ABL Assignment Quiz
Unit-V Introduction to ANOVA: One way and Two Way, Introduction to Sampling Techniques, Introduction to Multivariate Analysis, Transformation of Data.	End term examination ABL Viva Voce

Practical Exercise*	Course Modules	Assessment tools
(Min-8)		
	 Exploratory data analysis, fitting of distributions ~ Binomial, Poisson, Negative Binomial, Normal. Large sample tests, testing of hypothesis based on exact sampling distributions ~ chi square, t and F. Confidence interval estimation and Correlation and regression analysis, fitting of Linear and Quadratic Model. Non-parametric tests. ANOVA: One way, Two Way, SRS. 	Practical Activity Practical Record Viva voce
Resources:	LCD, White Board, Computer Lab.	
Assignment/Tutorial:	Students are required to submit one assignment and attend quiz as a part of their continuous evaluation system.	
List of Assignments	 Example of Binomial and Poisson distribution fitting Example of Principal Component analysis Example of Path Analysis 	
Suggested reading:	 A. Textbooks: 1. Gupta, S. C. and Kapoor, V. K. 2014. Fundamentals of Mathematical Statistics. Sultan Chand and sons. New Delhi 2. Gupta, V.,2002. Comdex Computer Kit. Dream Tech Press, New Delhi. 3. Chandel SRS. 1999. A handbook of Agricultural Statistics. AchalPrakashan 4. Anderson TW. 1958. An Introduction to Multivariate Statistical Analysis. John Wiley. 5. Dillon WR & Goldstein M. 1984. Multivariate Analysis - Methods and Applications. John Wiley. 6. Goon AM, Gupta MK &Dasgupta B. 1977. An Outline of Statistical Theory. Vol. I. The World Press. 7. Goon AM, Gupta MK &Dasgupta B. 1983. Fundamentals of Statistics. Vol. I. The World Press. 1) Rangaswamy, R.1995. A Text Book of Agricultural Statistics. New Age International Publishing Limited, Hyderabad. 2) Gupta, S. C. and Kapoor, V. K. 2014. Fundamentals of Mathematical Statistics. Sultan Chand and sons. New 	

Delhi		
-------	--	--

 Course Code: STAT 522
 Course Name: Data Analysis Using Statistical Packages
 Semester: 11nd

Credits	L	Т	Р	N	Marks	Contact Hours (per week)	Independent Study Hour (per week)	Section (Group)
3	2	0	1			4		Ph.D. Agronomy
Curriculum level				Informationbased Critical thinkingbased Research based	Student specific course outcome	Placement Research Higher education		

Objective:To understand different statistical packages like Excel, SPSS, SAS, R, and Python for enhancing practical proficiency in data analysis.

Course outcomes:Through this course students will be able to:

CO-1	To Gain a solid understanding of fundamental statistical concepts and develop skills to explore and visualize data effectively using statistical packages, fostering the ability to identify patterns, trends, and outliers.
CO-2	Develop skills to clean and preprocess raw data effectively and acquire proficiency in conducting statistical inference
CO-3	Learn advanced techniques in multivariate analysis, such as ANOVA and MANOVA, to analyze complex relationships among multiple variables simultaneously.
CO-4	Able to develop the ability to interpret statistical results in the context of the problem domain, translating findings into actionable insights for decision-makers.
CO-5	Gain hands-on experience with popular statistical packages like Excel, SPSS, SAS, R, and Python for enhancing practical proficiency in data analysis.
CO-6	Apply data analysis techniques to real-world scenarios, solving practical problems and making data-driven decisions in the field of Agriculture and cultivate a mindset for continuous learning in the rapidly evolving field of data analysis, staying informed about new statistical methods and tools.

Teaching Pedagogy:

T1	Classroom Lectures/Guest lectures Student Seminars/Presentations
T2	ABL activities Assignments

Assessment	Assessment tools:		
AT-1	One Midterm Exam		
AT-2	Seminar, Presentation		
AT-3	Assignment		
AT-4	Activity Based Learning		

Prerequisites

Module wise details

	Unit – I Introduction to various statistical packages: Excel, R, SAS, SPSS. Data Preparation; Descriptive statistics; Graphical representation of data, Exploratory data analysis.	Classroom teaching ABL
ontents	Unit – II Test for normality; Testing of hypothesis using chi-square, t and F statistics and Z-test.	Assignment Unannounced test Mid Term examination
Course Contents	Unit – III Data preparation for ANOVA and ANCOVA, Factorial Experiments, contrast analysis, multiple comparisons, Analyzing crossed and nested classified designs.	Quiz Assignment
	Unit – IV Analysis of mixed models; Estimation of variance components; Correlation and regression analysis, Probit, Logit and Tobit Models.	ABL Assignment Quiz
	Unit-V Discriminant function; Factor analysis; Principal component analysis; Analysis of time series data, Fitting of non-linear models; Neural networks.	End term examination ABL Viva Voce

Practical Exercise*	Course Modules	Assessment tools
(Min-8)		
	 Use of software packages for summarization and tabulation of data, obtaining descriptive statistics, graphical representation of data Testing the hypothesis for one sample t-test, two sample t-test, paired t- test, test for large samples - Chi-squares test, F test, one-way analysis of variance Designs for Factorial Experiments, fixed effect models, random effect models, mixed effect models, estimation of variance components Linear regression, Multiple regression, Regression plots Discriminant analysis - fitting of discriminant functions, identification of important variables Factor analysis. Principal component analysis - obtaining principal component. 	Practical Activity Practical Record Viva voce
Resources:	LCD, White Board, Computer Lab.	
Assignment/	Students are required to submit one assignment and attend quiz as a part of	
Tutorial	their continuous evaluation system.	
List of	1. Data analysis using SPSS software.	
Assignments	2. Data analysis using SAS software.	
	3. Data analysis using R software.	
	4. Data analysis using Python software.	

ABL	Short term courses of Python, SPSS, SAS and R Software.
	B. Textbooks:
	1) Anderson C.W. and Loynes R.M. 1987. The Teaching of Practical
	Statistics. John Wiley.
	2) Atkinson A.C. 1985. Plots Transformations and Regression. Oxford
	University Press.
	3) Chambers J.M., Cleveland W.S., Kleiner B and Tukey P.A. 1983.
	Graphical Methods for Data Analysis. Wadsworth, Belmount, California.
	4) Chatfield C. 1983. Statistics for Technology. 3rd Ed. Chapman & Hall.
	Chatfield C. 1995. Problem Solving: A Statistician's Guide. Chapman &
	Hall.
	5) Cleveland W.S. 1985. The Elements of Graphing Data. Wadsworth,
	Belmont, California.
	6) Ehrenberg ASC. 1982. A Primer in Data Reduction. John Wiley.
Suggested	7) Erickson B.H. and Nosanchuk T.A. 1992. Understanding Data. 2nd Ed.
reading:	Open University Press, Milton Keynes.
	8) Snell E.J. and Simpson HR. 1991. Applied Statistics: A Handbook of
	GENSTAT Analyses. Chapman and Hall.
	9) Sprent P. 1993. Applied Non-parametric Statistical Methods. 2nd Ed.
	Chapman & Hall.
	10) Tufte ER. 1983. The Visual Display of Quantitative Information. Graphics
	Press, Cheshire, Conn.
	11) Velleman PF and Hoaglin DC. 1981. Application, Basics and Computing
	of Exploratory Data Analysis. Duxbury Press
	Reference books:
	3) Rangaswamy, R.1995. <i>A Text Book of Agricultural Statistics</i> . New Age International Publishing Limited, Hyderabad.
	 Gupta, S. C. and Kapoor, V. K. 2014. Fundamentals of Mathematical Statistics. Sultan Chand and sons. New Delhi